.. _enabling_multimodal_inputs:
Enabling Multimodal Inputs
==========================
This document walks you through the steps to extend a vLLM model so that it accepts :ref:`multi-modal ` inputs.
.. seealso::
:ref:`adding_a_new_model`
1. Update the base vLLM model
-----------------------------
It is assumed that you have already implemented the model in vLLM according to :ref:`these steps `.
Further update the model as follows:
- Implement the :class:`~vllm.model_executor.models.interfaces.SupportsMultiModal` interface.
.. code-block:: diff
+ from vllm.model_executor.models.interfaces import SupportsMultiModal
- class YourModelForImage2Seq(nn.Module):
+ class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
.. note::
The model class does not have to be named :code:`*ForCausalLM`.
Check out `the HuggingFace Transformers documentation `__ for some examples.
- If you haven't already done so, reserve a keyword parameter in :meth:`~torch.nn.Module.forward`
for each input tensor that corresponds to a multi-modal input, as shown in the following example:
.. code-block:: diff
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
+ pixel_values: torch.Tensor,
) -> SamplerOutput:
2. Register input mappers
-------------------------
For each modality type that the model accepts as input, decorate the model class with :meth:`MULTIMODAL_REGISTRY.register_input_mapper `.
This decorator accepts a function that maps multi-modal inputs to the keyword arguments you have previously defined in :meth:`~torch.nn.Module.forward`.
.. code-block:: diff
from vllm.model_executor.models.interfaces import SupportsMultiModal
+ from vllm.multimodal import MULTIMODAL_REGISTRY
+ @MULTIMODAL_REGISTRY.register_image_input_mapper()
class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
A default mapper is available for each modality in the core vLLM library. This input mapper will be used if you do not provide your own function.
.. seealso::
:ref:`input_processing_pipeline`
3. Register maximum number of multi-modal tokens
------------------------------------------------
For each modality type that the model accepts as input, calculate the maximum possible number of tokens per data instance
and register it via :meth:`INPUT_REGISTRY.register_dummy_data `.
.. code-block:: diff
from vllm.inputs import INPUT_REGISTRY
from vllm.model_executor.models.interfaces import SupportsMultiModal
from vllm.multimodal import MULTIMODAL_REGISTRY
@MULTIMODAL_REGISTRY.register_image_input_mapper()
+ @MULTIMODAL_REGISTRY.register_max_image_tokens()
@INPUT_REGISTRY.register_dummy_data()
class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
Here are some examples:
- Image inputs (static feature size): `LLaVA-1.5 Model `__
- Image inputs (dynamic feature size): `LLaVA-NeXT Model `__
.. seealso::
:ref:`input_processing_pipeline`
4. (Optional) Register dummy data
---------------------------------
During startup, dummy data is passed to the vLLM model to allocate memory. This only consists of text input by default, which may not be applicable to multi-modal models.
In such cases, you can define your own dummy data by registering a factory method via :meth:`INPUT_REGISTRY.register_dummy_data `.
.. code-block:: diff
from vllm.inputs import INPUT_REGISTRY
from vllm.model_executor.models.interfaces import SupportsMultiModal
from vllm.multimodal import MULTIMODAL_REGISTRY
@MULTIMODAL_REGISTRY.register_image_input_mapper()
@MULTIMODAL_REGISTRY.register_max_image_tokens()
+ @INPUT_REGISTRY.register_dummy_data()
class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
.. note::
The dummy data should have the maximum possible number of multi-modal tokens, as described in the previous step.
Here are some examples:
- Image inputs (static feature size): `LLaVA-1.5 Model `__
- Image inputs (dynamic feature size): `LLaVA-NeXT Model `__
.. seealso::
:ref:`input_processing_pipeline`
5. (Optional) Register input processor
--------------------------------------
Sometimes, there is a need to process inputs at the :class:`~vllm.LLMEngine` level before they are passed to the model executor.
This is often due to the fact that unlike implementations in HuggingFace Transformers, the reshaping and/or expansion of multi-modal embeddings needs to take place outside model's :meth:`~torch.nn.Module.forward` call.
You can register input processors via :meth:`INPUT_REGISTRY.register_input_processor `.
.. code-block:: diff
from vllm.inputs import INPUT_REGISTRY
from vllm.model_executor.models.interfaces import SupportsMultiModal
from vllm.multimodal import MULTIMODAL_REGISTRY
@MULTIMODAL_REGISTRY.register_image_input_mapper()
@MULTIMODAL_REGISTRY.register_max_image_tokens()
@INPUT_REGISTRY.register_dummy_data()
+ @INPUT_REGISTRY.register_input_processor()
class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
A common use case of input processors is inserting placeholder tokens to leverage the vLLM framework for attention mask generation.
Here are some examples:
- Insert static number of image tokens: `LLaVA-1.5 Model `__
- Insert dynamic number of image tokens: `LLaVA-NeXT Model `__
.. seealso::
:ref:`input_processing_pipeline`