.. _fp8_kv_cache: FP8 E5M2 KV Cache ================== The int8/int4 quantization scheme requires additional scale GPU memory storage, which reduces the expected GPU memory benefits. The FP8 data format retains 2~3 mantissa bits and can convert float/fp16/bflaot16 and fp8 to each other. Here is an example of how to enable this feature: .. code-block:: python from vllm import LLM, SamplingParams # Sample prompts. prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] # Create a sampling params object. sampling_params = SamplingParams(temperature=0.8, top_p=0.95) # Create an LLM. llm = LLM(model="facebook/opt-125m", kv_cache_dtype="fp8") # Generate texts from the prompts. The output is a list of RequestOutput objects # that contain the prompt, generated text, and other information. outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")