Skip to content

[[open-in-colab]]

训练扩散模型

无条件图像生成是扩散模型的一个流行应用,它能够生成看起来像训练数据集中图像的图像。通常,通过对预训练模型在特定数据集上进行微调可以获得最佳结果。你可以在Hub上找到许多这样的检查点,但如果你找不到喜欢的模型,你总是可以训练自己的模型!

本教程将教你如何在一个Smithsonian Butterflies数据集的子集上从头开始训练一个[UNet2DModel],以生成你自己的🦋蝴蝶🦋。

在开始之前,请确保你已经安装了🤗 Datasets来加载和预处理图像数据集,以及🤗 Accelerate,以简化在任意数量的GPU上的训练。以下命令还将安装TensorBoard来可视化训练指标(你也可以使用Weights & Biases来跟踪你的训练)。

py
# uncomment to install the necessary libraries in Colab
#!pip install diffusers[training]

我们鼓励你与社区分享你的模型,为此,你需要登录你的 Hugging Face 账户(如果你还没有账户,可以在这里创建一个!)。你可以从笔记本中登录,并在提示时输入你的令牌。确保你的令牌具有写入权限。

py
>>> from huggingface_hub import notebook_login

>>> notebook_login()

或者从终端登录:

bash
huggingface-cli login

由于模型检查点文件非常大,请安装 Git-LFS 来管理这些大文件的版本:

bash
!sudo apt -qq install git-lfs
!git config --global credential.helper store

训练配置

为了方便,创建一个包含训练超参数的 TrainingConfig 类(可以根据需要调整这些参数):

py
>>> from dataclasses import dataclass

>>> @dataclass
... class TrainingConfig:
...     image_size = 128  # the generated image resolution
...     train_batch_size = 16
...     eval_batch_size = 16  # how many images to sample during evaluation
...     num_epochs = 50
...     gradient_accumulation_steps = 1
...     learning_rate = 1e-4
...     lr_warmup_steps = 500
...     save_image_epochs = 10
...     save_model_epochs = 30
...     mixed_precision = "fp16"  # `no` for float32, `fp16` for automatic mixed precision
...     output_dir = "ddpm-butterflies-128"  # the model name locally and on the HF Hub

...     push_to_hub = True  # whether to upload the saved model to the HF Hub
...     hub_model_id = "<your-username>/<my-awesome-model>"  # the name of the repository to create on the HF Hub
...     hub_private_repo = False
...     overwrite_output_dir = True  # overwrite the old model when re-running the notebook
...     seed = 0


>>> config = TrainingConfig()

加载数据集

你可以使用 🤗 Datasets 库轻松加载 Smithsonian Butterflies 数据集:

py
>>> from datasets import load_dataset

>>> config.dataset_name = "huggan/smithsonian_butterflies_subset"
>>> dataset = load_dataset(config.dataset_name, split="train")

🤗 Datasets 使用 [~datasets.Image] 功能自动解码图像数据并将其加载为 PIL.Image,我们可以对其进行可视化:

py
>>> import matplotlib.pyplot as plt

>>> fig, axs = plt.subplots(1, 4, figsize=(16, 4))
>>> for i, image in enumerate(dataset[:4]["image"]):
...     axs[i].imshow(image)
...     axs[i].set_axis_off()
>>> fig.show()

不过,这些图像的大小各不相同,因此你需要先对它们进行预处理:

  • Resize 将图像大小调整为 config.image_size 中定义的大小。
  • RandomHorizontalFlip 通过随机镜像图像来增强数据集。
  • Normalize 很重要,它将像素值重新缩放到 [-1, 1] 范围内,这是模型所期望的。
py
>>> from torchvision import transforms

>>> preprocess = transforms.Compose(
...     [
...         transforms.Resize((config.image_size, config.image_size)),
...         transforms.RandomHorizontalFlip(),
...         transforms.ToTensor(),
...         transforms.Normalize([0.5], [0.5]),
...     ]
... )

使用 🤗 Datasets 的 [~datasets.Dataset.set_transform] 方法在训练过程中动态应用 preprocess 函数:

py
>>> def transform(examples):
...     images = [preprocess(image.convert("RGB")) for image in examples["image"]]
...     return {"images": images}


>>> dataset.set_transform(transform)

可以随意再次可视化图像,以确认它们已被调整大小。现在你可以将数据集包装在 DataLoader 中进行训练了!

py
>>> import torch

>>> train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True)

创建一个 UNet2DModel

在 🧨 Diffusers 中,可以通过所需的参数轻松地从模型类创建预训练模型。例如,要创建一个 [UNet2DModel]:

py
>>> from diffusers import UNet2DModel

>>> model = UNet2DModel(
...     sample_size=config.image_size,  # the target image resolution
...     in_channels=3,  # the number of input channels, 3 for RGB images
...     out_channels=3,  # the number of output channels
...     layers_per_block=2,  # how many ResNet layers to use per UNet block
...     block_out_channels=(128, 128, 256, 256, 512, 512),  # the number of output channels for each UNet block
...     down_block_types=(
...         "DownBlock2D",  # a regular ResNet downsampling block
...         "DownBlock2D",
...         "DownBlock2D",
...         "DownBlock2D",
...         "AttnDownBlock2D",  # a ResNet downsampling block with spatial self-attention
...         "DownBlock2D",
...     ),
...     up_block_types=(
...         "UpBlock2D",  # a regular ResNet upsampling block
...         "AttnUpBlock2D",  # a ResNet upsampling block with spatial self-attention
...         "UpBlock2D",
...         "UpBlock2D",
...         "UpBlock2D",
...         "UpBlock2D",
...     ),
... )

通常,快速检查样本图像形状是否与模型输出形状匹配是一个好主意:

py
>>> sample_image = dataset[0]["images"].unsqueeze(0)
>>> print("Input shape:", sample_image.shape)
Input shape: torch.Size([1, 3, 128, 128])

>>> print("Output shape:", model(sample_image, timestep=0).sample.shape)
Output shape: torch.Size([1, 3, 128, 128])

太好了!接下来,你需要一个调度器来给图像添加一些噪声。

创建一个调度器

调度器的行为取决于你是将模型用于训练还是推理。在推理过程中,调度器从噪声中生成图像。在训练过程中,调度器从扩散过程中的特定点获取模型输出(或样本),并根据噪声调度更新规则对图像应用噪声。

让我们来看看[DDPMScheduler],并使用add_noise方法为之前的sample_image添加一些随机噪声:

py
>>> import torch
>>> from PIL import Image
>>> from diffusers import DDPMScheduler

>>> noise_scheduler = DDPMScheduler(num_train_timesteps=1000)
>>> noise = torch.randn(sample_image.shape)
>>> timesteps = torch.LongTensor([50])
>>> noisy_image = noise_scheduler.add_noise(sample_image, noise, timesteps)

>>> Image.fromarray(((noisy_image.permute(0, 2, 3, 1) + 1.0) * 127.5).type(torch.uint8).numpy()[0])

模型的训练目标是预测添加到图像中的噪声。这一步的损失可以通过以下方式计算:

py
>>> import torch.nn.functional as F

>>> noise_pred = model(noisy_image, timesteps).sample
>>> loss = F.mse_loss(noise_pred, noise)

训练模型

到目前为止,你已经具备了开始训练模型的大部分组件,剩下的就是将所有内容整合在一起。

首先,你需要一个优化器和一个学习率调度器:

py
>>> from diffusers.optimization import get_cosine_schedule_with_warmup

>>> optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
>>> lr_scheduler = get_cosine_schedule_with_warmup(
...     optimizer=optimizer,
...     num_warmup_steps=config.lr_warmup_steps,
...     num_training_steps=(len(train_dataloader) * config.num_epochs),
... )

然后,你需要一种评估模型的方法。对于评估,你可以使用[DDPMPipeline]生成一批样本图像,并将其保存为网格:

py
>>> from diffusers import DDPMPipeline
>>> from diffusers.utils import make_image_grid
>>> import os

>>> def evaluate(config, epoch, pipeline):
...     # Sample some images from random noise (this is the backward diffusion process).
...     # The default pipeline output type is `List[PIL.Image]`
...     images = pipeline(
...         batch_size=config.eval_batch_size,
...         generator=torch.Generator(device='cpu').manual_seed(config.seed), # Use a separate torch generator to avoid rewinding the random state of the main training loop
...     ).images

...     # Make a grid out of the images
...     image_grid = make_image_grid(images, rows=4, cols=4)

...     # Save the images
...     test_dir = os.path.join(config.output_dir, "samples")
...     os.makedirs(test_dir, exist_ok=True)
...     image_grid.save(f"{test_dir}/{epoch:04d}.png")

现在,你可以将所有这些组件一起包装在一个训练循环中,使用🤗 Accelerate 进行简单的 TensorBoard 日志记录、梯度累积和混合精度训练。要将模型上传到 Hub,编写一个函数来获取你的仓库名称和信息,然后将其推送到 Hub。

py
>>> from accelerate import Accelerator
>>> from huggingface_hub import create_repo, upload_folder
>>> from tqdm.auto import tqdm
>>> from pathlib import Path
>>> import os

>>> def train_loop(config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler):
...     # Initialize accelerator and tensorboard logging
...     accelerator = Accelerator(
...         mixed_precision=config.mixed_precision,
...         gradient_accumulation_steps=config.gradient_accumulation_steps,
...         log_with="tensorboard",
...         project_dir=os.path.join(config.output_dir, "logs"),
...     )
...     if accelerator.is_main_process:
...         if config.output_dir is not None:
...             os.makedirs(config.output_dir, exist_ok=True)
...         if config.push_to_hub:
...             repo_id = create_repo(
...                 repo_id=config.hub_model_id or Path(config.output_dir).name, exist_ok=True
...             ).repo_id
...         accelerator.init_trackers("train_example")

...     # Prepare everything
...     # There is no specific order to remember, you just need to unpack the
...     # objects in the same order you gave them to the prepare method.
...     model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
...         model, optimizer, train_dataloader, lr_scheduler
...     )

...     global_step = 0

...     # Now you train the model
...     for epoch in range(config.num_epochs):
...         progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process)
...         progress_bar.set_description(f"Epoch {epoch}")

...         for step, batch in enumerate(train_dataloader):
...             clean_images = batch["images"]
...             # Sample noise to add to the images
...             noise = torch.randn(clean_images.shape, device=clean_images.device)
...             bs = clean_images.shape[0]

...             # Sample a random timestep for each image
...             timesteps = torch.randint(
...                 0, noise_scheduler.config.num_train_timesteps, (bs,), device=clean_images.device,
...                 dtype=torch.int64
...             )

...             # Add noise to the clean images according to the noise magnitude at each timestep
...             # (this is the forward diffusion process)
...             noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

...             with accelerator.accumulate(model):
...                 # Predict the noise residual
...                 noise_pred = model(noisy_images, timesteps, return_dict=False)[0]
...                 loss = F.mse_loss(noise_pred, noise)
...                 accelerator.backward(loss)

...                 if accelerator.sync_gradients:
...                     accelerator.clip_grad_norm_(model.parameters(), 1.0)
...                 optimizer.step()
...                 lr_scheduler.step()
...                 optimizer.zero_grad()

...             progress_bar.update(1)
...             logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
...             progress_bar.set_postfix(**logs)
...             accelerator.log(logs, step=global_step)
...             global_step += 1

...         # After each epoch you optionally sample some demo images with evaluate() and save the model
...         if accelerator.is_main_process:
...             pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler)

...             if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1:
...                 evaluate(config, epoch, pipeline)

...             if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1:
...                 if config.push_to_hub:
...                     upload_folder(
...                         repo_id=repo_id,
...                         folder_path=config.output_dir,
...                         commit_message=f"Epoch {epoch}",
...                         ignore_patterns=["step_*", "epoch_*"],
...                     )
...                 else:
...                     pipeline.save_pretrained(config.output_dir)

呼,那可是一大段代码!但你终于准备好使用 🤗 Accelerate 的 [~accelerate.notebook_launcher] 函数来启动训练了。将训练循环、所有训练参数以及用于训练的进程数(你可以将此值更改为可用的 GPU 数量)传递给该函数:

py
>>> from accelerate import notebook_launcher

>>> args = (config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler)

>>> notebook_launcher(train_loop, args, num_processes=1)

训练完成后,看看你的扩散模型生成的最终 🦋 图像 🦋 吧!

py
>>> import glob

>>> sample_images = sorted(glob.glob(f"{config.output_dir}/samples/*.png"))
>>> Image.open(sample_images[-1])

下一步

无条件图像生成是可训练的任务之一。你可以通过访问🧨 Diffusers 训练示例页面来探索其他任务和训练技术。以下是你可以学习的一些示例:

  • 文本反转,一种算法,教模型一个特定的视觉概念并将其整合到生成的图像中。
  • DreamBooth,一种技术,用于根据给定的几张输入图像生成主题的个性化图像。
  • 指南,关于如何在自己的数据集上微调 Stable Diffusion 模型。
  • 指南,关于使用 LoRA,一种内存高效的技术,用于更快地微调非常大的模型。